

Joseph Abel

Department of Physics, USU

Virus Seeking Probes

Source: http://science.nasa.gov/headlines/y2002/15jan_nano.htm

Nano-Robots Replacing Neurons

Source: http://www.e-spaces.com/Portfolio/trans/blood/index.html

Why Nanomedicine?

- Nanotechnology offers great advancements to medicine
- There is still a lot to be learned about the human body and nanotechnology offers a lot of help.

Artery Cleaner

Source: http://foresight.org/Nanomedicine/Gallery/index.html

Nano-Technology applied to Cancer

Advantages of Nanoscale devices in Medicine

- Devices smaller than 50 nm can easily enter most cells
- Devices smaller than 20 nm can transit out of blood vessels
- Devices are capable of holding thousands of small molecules
 - Contrast Agents
 - Drugs

Major Areas of Development of Nanomedicine

- Prevention and control
- Early detection
- Imaging diagnostics
- Multifunctional Therapeutics

Nanoparticles

Reference: Ed Neuwelt, Oregon Health Sciences University

Nanoparticle Contrast Agents Under Development

Quantum Dots

- unique optical and electronic properties such as:
 - size and composition
 - tunable fluorescence emission from visible to infrared wavelengths
 - large absorption coefficients across a wide spectral
 - range and very high levels of brightness and photo stability
- colloidal quantum dots are the size of a typical protein

Taken From: The use of nanocrystals in biological detecion, Paul Alivisatos

In vivo Cancer Targeting and Imaging with Quantum Dots

A summary of the report published by Xiaohu Gao, Richard M Levenson, Leland W K Chung & Shumming Nie

Probe Design

Tumor Targeting

Behavior of Quantum Dots in Animals

Histological Examination of QD Uptake

QD-COOH QD-PEG QD-PSMA Brain Heart Kidney Liver Lung Spleen Tumor Tumor

Quantum Dots in Live Mouse

Behavior of Quantum Dots in Animals

Quantum Dots vs Organic Dyes

Nanoparticle Contrast Agents Under Development

Photonic Crystals

Nanoshells

Reference: Jennifer West, Rice University

Properties of Gold Nanoshells

• "Tunability" of the optical resonance

Images of Nanoshells

Larger diameter nanoshells used for Imaging

120 nm radius and 35 nm shell thickness

100 nm radius and 20 nm shell thickness

Smaller diameter nanoshells used for photothermal therapy applications

60 nm radius and 10 nm shell

Nanowire Sensor

Reference: Jim Heath, California Institute of Technology

Nano-Wires in Biosensing

Silicon Nanowire

Carbon Nanotube

Conductance Graphs

Nanoscale Cantilevers

Cantilevers can be used as detectors of molecules. In this example specific molecules are attached to the cantilevers. The molecules selected are molecules that will bind to a specific molecule. When that molecule binds to the cantilever it changes the physical properties of the cantilever and that change can be detected.

Reference: Arun Majumdar, University of California at Berkeley

A team at the California Institute of Technology is using tiny cantilevers to probe molecular bonds.

